About Johns Hopkins

 

Return to News Releases

Astrophysicist Adam Riess Wins the 2011 Nobel Prize in Physics

THE JOHNS HOPKINS UNIVERSITY
OFFICE OF NEWS AND INFORMATION
901 S. Bond St., Suite 540
Baltimore, Maryland 21231
October 4, 2011
FOR IMMEDIATE RELEASE
JOHNS HOPKINS MEDIA CONTACT:  Lisa De Nike
443-287-9960 (office)
443-845-3148 (cell)
Lde@jhu.edu
or
Amy Lunday
443-287-9960
acl@jhu.edu
or
SPACE TELESCOPE SCIENCE INSTITUTE CONTACT: Ray Villard
410-338-4514
villard@stsci.edu

Astrophysicist Adam Riess Wins the 2011 Nobel Prize in Physics

big smile 2 copy

Adam Riess

Adam Riess, the Krieger-Eisenhower Professor in Physics and Astronomy and a Gilman Scholar at The Johns Hopkins University, and a scientist at the Space Telescope Science Institute, today was awarded the 2011 Nobel Prize in Physics by the Royal Swedish Academy of Sciences. The academy recognized him for leadership in the High-z Team’s 1998 discovery that the expansion rate of the universe is accelerating, a phenomenon widely attributed to a mysterious, unexplained “dark energy” filling the universe.

Riess (pronounced “Reese”), 41, shares this year’s prize with Saul Perlmutter, an astrophysicist at the University of California, Berkeley, and the Lawrence Berkeley Laboratory, whose Supernova Cosmology Project team published similar results shortly after those published by Riess and High-z teammate Brian Schmidt, of the Australian National University. Both teams shared the Peter Gruber Foundation’s 2007 Cosmology Prize – a gold medal and $500,000 – for the discovery of dark energy, which Science Magazine called “The Breakthrough Discovery of the Year” in 1998. The researchers also shared the 2006 Shaw Prize in astronomy for the same discovery.

Considered the most prestigious prize in the world, the Nobel has been awarded for achievements in physics, chemistry, physiology or medicine, literature and peace since 1901 by the Nobel Foundation in Stockholm, Sweden. Riess will receive a medal and diploma and will share a cash award of $1.49 million to be presented at a ceremony in Stockholm in December.

“This is an amazing day for all of us at Johns Hopkins, and we are immensely proud,” said Ronald J. Daniels, president of the university. “Dr. Riess’s passion to know more, and the energy with which he pursues that passion, exemplify the commitment made by all of us across Johns Hopkins to deploy knowledge to create a better and more humane world. That hunger to always know more is what makes the Johns Hopkins faculty so extraordinary.”

Riess is the 35th person associated with Johns Hopkins as a faculty member, fellow or graduate to win a Nobel Prize. He joins three other Nobel laureates on the university’s current faculty: Riccardo Giacconi, University Professor of Physics and Astronomy, who won the physics prize in 2002; Peter Agre, 1974 School of Medicine graduate, former professor in the School of Medicine and now director of the Malaria Research Institute in the Bloomberg School of Public Health, who won the chemistry prize in 2003, and Carol Greider, professor and director of molecular biology and genetics in the School of Medicine, who won 2009′s physiology or medicine prize.

An overjoyed Riess thanked the Nobel Foundation for the award and said, “My involvement in the discovery of the accelerating universe and its implications for the presence of dark energy has been an incredibly exciting adventure. I have also been fortunate to work with tremendous colleagues and powerful facilities. I am deeply honored that this work has been recognized.”

Education and Career Path

The youngest child of a psychologist mother and an engineer-turned-entrepreneur father, Riess grew up in Warren, N.J. An exceptionally inquisitive boy, Riess was teaching an adult class in computer programming at the age of 13. His parents were proud of Riess’s intelligence and accomplishments, but kept him grounded and humble by requiring him to work part-time in his father’s New York-style delicatessen, washing dishes and bussing tables, he said in a 2008 article in  Johns Hopkins Magazine.

Riess is a 1992 graduate of Massachusetts Institute of Technology, where he majored in physics and minored in history. (He is an avid sports fan, and wrote his final research paper on baseball’s 1919 “Black Sox” scandal.) He earned his doctorate in astrophysics from Harvard University in 1996. From 1996 to 1999, the period when the dark energy discovery was made, Riess was a Miller Fellow at the University of California, Berkeley.

Since then, Riess has led rigorous efforts to use the Hubble Space Telescope to increase the precision of the dark energy findings, which are important not only for comprehending the makeup of the universe, but also for understanding its history and future and in unraveling other important questions in theoretical physics.

Riess’s accomplishments have been recognized with a number of prestigious awards. In 2008, he won a $1 million John T. and Catherine D. MacArthur Foundation “Fellowship Grant,” also known as a “genius grant.” That same year, he was among the 212 fellows elected to the 228th class of the American Academy of Arts and Sciences. In 2007, he shared The Peter Gruber Foundation’s Cosmology Prize – a gold medal and $500,000 — and in 2006, he won the $1 million Shaw Prize, considered by some to be “the Nobel of the East.” In 2009, Riess was elected to the National Academy of Sciences.

Research

Riess led the study for the High-z Supernova Search Team of highly difficult and precise measurements – across 7 billion light years – that resulted in the remarkable 1998 discovery that many believe has changed astrophysics forever: an accelerated expansion of the universe propelled by dark energy.

“We originally set out to use a special kind of exploding star called ‘supernovae’ to measure how fast the universe was expanding in the past and to compare it to how fast it is expanding now,” Riess remembered. “We anticipated finding that gravity had slowed the rate of expansion over time. But that’s not what we found.”

Instead, Riess’ team was startled to discern that the rate of expansion was actually speeding up.

“If you tossed a ball into the air and it kept right on going up instead of falling to the ground, you’d be pretty surprised. Well, that’s about how surprised we were to get that result,” Riess said.

These startling observations sent the team back to the idea – first proposed by Albert Einstein but later rejected as his “biggest blunder” – that the so-called vacuum of space might produce a sort of “anti-gravity” energy that could act repulsively, accelerating the expansion of the universe.

“Suddenly, that idea made sense,” said Riess, who posits that dark energy may account for up to 70 percent of the universe. However, exactly what dark energy is and how it behaves remains among the most pressing questions in astrophysics today.

“One of the most exciting things about dark energy is that it seems to live at the very nexus of two of our most successful theories of physics: quantum mechanics, which explains the physics of the small, and Einstein’s Theory of General Relativity, which explains the physics of the large, including gravity,” he said.

“Currently, physicists have to choose between those two theories when they calculate something. Dark energy is giving us a peek into how to make those two theories operate together. Nature somehow must know how to bring these both together, and it is giving us some important clues. It’s up to us to figure out what [those clues] are saying.”

Current Research and Interests

Many cosmologists say that understanding dark energy is the biggest challenge in cosmology and physics. Riess and his team are trying to measure dark energy’s two most fundamental properties: how stable it is and how it has changed with the evolving universe.

Riess is continuing his Hubble Space Telescope observations of distant supernovae to characterize dark energy. He also is involved in searching for the exploding stars with the Panoramic Survey Telescope and Rapid Response System, a series of ground-based telescopes at the University of Hawaii’s Institute for Astronomy. The sky survey is expected to find thousands of new supernovae.

In another method, Riess and his team, called SH0ES (Supernova H0 the Equation of State), are analyzing pulsating stars, called Cepheid variables, with the Hubble telescope to refine the measurement of the universe’s expansion rate. The new results are helping scientists zero in on the properties of dark energy.

Riess’s Web page: http://www.stsci.edu/~ariess/

Other useful links: http://www.jhu.edu/jhumag/0208web/riess.html

http://www.sciencenews.org/view/generic/id/43571/title/Honing_the_Hubble_constant

http://krieger.jhu.edu/magazine/f08/n1.html

http://krieger.jhu.edu/magazine/fw07/r2.html

http://www.jhu.edu/news/podcasts/mp3/riess1.mp3

A digital photos of Riess is  available. Call the Office of News and Information at 443-287-9960.

###

Johns Hopkins University news releases can be found on the World Wide Web at http://releases.jhu.edu/
Information on automatic E-mail delivery of science and medical news releases is available at the same address.


Office of Communications
Johns Hopkins University
3910 Keswick Road, Suite N2600
Baltimore, Maryland 21211
Phone: 443-997-9009 | Fax: 443 997-1006

events calendar
click to view events calendar
browse Johns Hopkins A-Z
click to browse
on the web
  • click for hopkins on Facebook
  • click for hopkins on Twitter
  • click for hopkins on YouTube
  • click for hopkins music